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ABSTRACT
The Hedonic method has been widely adopted for real estate ap-
praisal and has been enhanced with machine learning and deep
learning algorithms. Meanwhile, econometrics Hedonic models
with time and space variant components have also been developed
to capture the temporal and spatial auto-correlation in housing
price. However, these machine learning or parametric models pro-
duce only predictions in training periods. This project aims to �ll
the gap by introducing a novel hybrid method which utilises XG-
Boost regressors and a Spatio-Temporal Neural Network (STNN)
to predict out-of-training-period predictions. Experiments are con-
ducted on a housing dataset of Amsterdam. Results show that the
hybrid method with STNN produces up to 22% lower forecast error
than its equivalent with Recurrent Neural Network (RNN) and up
to 1.7% beneath plain XG-Boost. In addition, it successfully unveils
the underlying spatial correlations amongst districts in the hous-
ing market of Amsterdam. The method could be further developed
by incorporating multiple levels of spatio-temporal variation and
expanding the dimensions of the STNN.

KEYWORDS
HedonicMethod, Real Estate Appraisal, Forecasting,Machine Learn-
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1 INTRODUCTION
Rapid-growing prices for real estate properties have been a ma-
jor issue for most cities in the world. Amsterdam is no exception.
Housing prices of the Dutch capital are estimated to have risen
by 14.9% from 2020 to 2021 [14] and by 17.6% for the next year
[15]. In this period, even the relatively a�ordable western suburbs
(Slotermeer, Osdorp), north Amsterdam and Bijlmer in the southeast
have seen marked increases while De Gouden Bocht remains the
most prestigious area of the city [16].

As the cost of land is one of themost decisive factors in real estate
prices, accurate prediction of land value plays a crucial part in the
municipality’s e�orts to control the fast growth in housing costs. On
the one hand, the administration aims to keep housing a�ordable
to its residents. On the other hand, appraisal of land in the city
should re�ect the true value to achieve e�cient utilization of limited
resources. Currently the residual method, which valuates the land
value by subtracting the estimated development cost from the total
worth of all the exiting properties upon the land [13], is adopted
by the Municipality of Amsterdam to appraise the value of land for
redevelopment. Therefore, the problem is again transformed back
to real estate appraisal.

The Hedonic pricing method [7], built upon parametric regres-
sion models, is one of the most widely used approach for valuation
of real estate properties. This method is also utilised and extended in
the machine learning �eld, with the Boston Housing Project being
the most famous use case. The objective of the project is to build
regression models with machine learning algorithms to predict
housing prices with features of the houses as well as the neigh-
bourhood, based on a dataset obtained in suburbs of Boston [1].
However, most of the models from the machine learning projects
produce only predictions in the training period while out-of-period
predictions, or forecasts, appear to be more valuable for real estate
investments, mortgage calculation and land redevelopment, just as
the use case of the Municipality of Amsterdam. Given such circum-
stances, this project aims to utilise state-of-the-art machine learning
and deep learning algorithms, especially algorithms for forecast-
ing, to provide out-of-period predictions for real estate appraisal.
Furthermore, this project also explores the additional insights of
spatial features brought by the deep learning model deployed.

2 RELATEDWORK
With the rapid evolution of arti�cial intelligence technologies and
exponential growth of computing power, there have been appli-
cations of machine learning and deep learning algorithms on the
Hedonic method as well as forecasting tasks. In the meantime, var-
ious statistical models have also been developed to capture the
spatial and temporal variation in real estate prices. This section
brie�y describes the state-of-the-art parametric and non-parametric
approaches related to real estate appraisal and forecasting.

2.1 Machine Learning Approaches on Hedonic
Method

In a study of housing prices of Onondaga County, New York, Yoo
et al. �nd that Random Forest generates Hedonic price predictions
of higher accuracy than Cubist method, a support vector regressor,
and statistical regression models with ordinary least squares (OLS)
method [18]. Yazdani has similar �ndings on Random Forest, but he
also suggests that Arti�cial Neural Networks (ANN) outperforms
parametric regression on property data of Boulder, Colorado [17].
On the contrary, Mayer et al. �nd that gradient boosting provides
more accurate Hedonic predictions over parametric regression,
Random Forest and Neural Networks [8]. Furthermore, Ming et al.
conclude that XG-Boost produce predictions of higher accuracy
than Random Forest Regressor and LightGBM on house rental data
from Chengdu [9].
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2.2 Parametric Spatio-Temporal Models on Real
Estate Appraisal

As transaction date and geographic location are the two key factors
in housing prices, various statistical regression models with spatial
and temporal components have been developed by economists
to capture the variation. The Hierarchical Trend Model (HTM)
published byM. Francke is a state-spacemodel with the assumptions
that the log-transformed housing prices can be decomposed into
time-variant and time-invariant components. The time-invariant
part mainly consists static features of real estate properties, e.g.
number of rooms and area of living, which could be modelled
by traditional Hedonic method. The time-variant part includes a
hierarchy of underlying trends from general to neighbourhood
level, which shows characteristics of time series such as random
walk or drift [5]. The parameters of HTM are optimised through
Kalman �lter and smoother [5, 6].

Other spatio-temporal models for real estate appraisal are mainly
variants of traditional regression. By incorporating spatial and tem-
poral auto-regression, Pace et al. develop a spatio-temporal regres-
sion model, producing 8% lower sum of square error (SSE) than
OLS regression with spatial indicator variables on a one-step ahead
forecast experiment of housing price in Baton Rouge, Louisiana
[11]. Fotheringham et al. develop a hybrid model named GWR-TS
by integrating time-series forecast methods into a geographically
weighted regression (GWR)model, built with local spatial modelling
techniques. The GWR-TS model achieve lower root-mean-square
error (RMSE) than OLS regression on housing price forecast in Lon-
don [4]. Crosby, Davis, Damoulas and Jarvis claim to have beaten
machine learning algorithms such as Random Forest and M5P-
regression-tree on RMSE forecasting British real estate properties
with their spatio-temporal Gaussian Process Regression [2].

2.3 Spatio-Temporal Deep Learning Algorithms
Since the invention of Recurrent Neural Network (RNN) [12], nu-
merous deep learning algorithms have been utilised for forecast-
ing purposes. The Spatio-Temporal Neural Network (STNN) pro-
posed by Delasalles et al. is a variant of RNN and also a state-space
model [3]. As opposed to RNN which captures latent dynamics
of a one-dimensional series, STNN is designed to learn and cap-
ture, by Stochastic Gradient Descent, the temporal variation of a
multi-dimensional series with dependencies amongst neighbouring
dimensions or, alternatively, multiple temporal series from a spatial
scope with spatial auto-correlation amongst neighbouring series.
Apart from learning with pre-de�ned spatial correlation, STNN
is developed with two other modes, denoted by STNN-R (Re�ne)
and STNN-D (Discovery), which are capable of re�ning (with prior
information) and discovering (without prior information) under-
lying spatial correlations. The algorithm is applied on forecasting
and imputation of disease spreading, weather conditions and road
tra�c and outperforms classical auto-regressive model and other
deep learning algorithms such as RNN and vectorial auto-regressive
multilayer perceptron (VAR-MLP) on RMSE [3].

The STNN algorithm has been modi�ed for similar forecast
projects. Niu et al. build STNN with Augmented Spatial States
(STNN-A) and STNN with Input Gate (STNN-I) to forecast spread-
ing of Covid-19 in China, USA and Italy. Both STNN-A and STNN-I

outperform parametric regression models, ANN and RNN on RMSE
[10]. Zhang and Patras propose a double-STNN model which re-
duces prediction error on 10-hour tra�c forecast by up to 61% com-
pared to common methods including Auto-regressive Integrated
Moving Average (ARIMA) and Convolutional Long Short-Term
Memory [19].

3 RESEARCH QUESTIONS
Based on the literature review in Section 2, we hereby identify a
research gap where non-parametric spatio-temporal deep learning
algorithms are yet to be applied on Hedonic price models and
forecasting housing price. Therefore, we set the main research
question of this project to be:

To what extent can spatio-temporal deep learning approaches im-
prove Hedonic method on real estate appraisal?

This research question is further divided into three sub-questions:

3.1 Sub-question 1
To what extent can spatio-temporal deep learning approaches outper-
form Hedonic method by classic machine learning algorithms?

3.2 Sub-question 2
To what extent can spatio-temporal deep learning approaches outper-
form Hedonic method with machine learning algorithms for temporal
forecasting?

3.3 Sub-question 3
Towhat extent do the spatial relations re�ned and discovered by spatio-
temporal deep learning approaches di�er from human-determined
values?

4 METHODOLOGY
To investigate the performance of spatio-temporal deep learning
approaches on Hedonic method and answer the research ques-
tions, the Spatio-Temporal Neural Networks (STNN) and its variants
STNN-R and STNN-D developed by Delasalles et al. [3] are utilised
as the main algorithm of this project. As the STNN is developed
from Recurrent Neural Network (RNN), an RNN is also deployed as
the benchmark algorithm of temporal forecasting. Due to the superb
performance of Extreme Gradient Boosting (XG-Boost) on Hedo-
nic method as described in literature, an XG-Boosted tree-based
non-linear regression model is adopted as the baseline model.

4.1 Baseline Method: XG-Boosted Regression
As the baseline method, the XG-Boost regressor assumes that there
is no spatial or temporal auto-correlation of real estate prices. In-
stead, the spatial (geographic locations) and the temporal (transac-
tion dates) features are treated in the same way as the static features
(characteristics of properties, e.g. area of living, number of rooms,
etc.). This regression model is described in Equation 1:

~8 = 5 (-8 ) + Y8 , Y8 ⇠ N(0,f2) (1)
In Equation 1,~8 is the natural log of the transaction price per m2

of real estate property i,-8 is the feature vector of property i, which
includes all the static features as well as the spatial and temporal
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features. f is the non-linear function to be learnt by the XG-Boost
regressor. Y8 is the error term of property i and we assume that the
error follows normal distribution with zero mean.

4.2 Hybrid Method with Recurrent Neural
Network

Inspired by the Hierarchical Trend Model (HTM) [5] developed by
Francke et al., we assume that there exists only temporal but no
spatial auto-correlation in the underlying trend of transaction price.
As compared to -8 in Equation 1, the temporal feature is excluded
in - 08 in Equation 2. However, the spatial feature remains in - 08
along with the static features.

f’ is a non-linear function similar to f in Equation 1. For the
purpose of performance comparison, f’ is learnt by an XG-Boost
regressor with the same hyper-parameter settings as the baseline
method.

We further assume that there exists a certain level of property
price, denoted as �C , for every temporal period t, and the log-
transformed property price is the product of temporal price level �C
and static estimator f’(- 08 ), plus a zero-mean normally distributed
error term.

~8C = �C · 5 0(- 08 ) + Y8 , Y8 ⇠ N(0,f2) (2)

For a dataset consisting of real estate transactions of T temporal
periods, all the price level values �1, �2, ..., �) compose an auto-
correlated sequential series, which could be modelled by Recurrent
Neural Network (RNN). The RNN algorithm deployed in this project
captures the dynamic process and is expressed in a latent space. The
latent factor of temporal period t is denoted by /C in Equation 3. g
is the dynamic transition function that maps the latent factor /C
of temporal period t to the next sequential latent factor /C+1. Note
that this approach is di�erent from the traditional RNN algorithm
[3], where the latent factor is also generated with the ground truth
of series values, i.e. /C+1 = 6(/C ,�C ). However, as the method in
section 4.3 also learns the dynamic latent factors entirely in the
latent space, the same approach is adopted for RNN for the purpose
of performance comparison with the hybrid method using STNN
introduced in Section 4.3.

The dynamic transition function g is learnt by RNN with back
propagation and stochastic gradient descent.

/C+1 = 6(/C ) (3)

For every temporal period, RNN generates an estimation of the
series value, denoted by �̂C in Equation 4, using the decoder function
d.

�̂C = 3 (/C ) (4)

4.3 Hybrid Method with Spatio-temporal
Neural Network

On top of section 4.2, we further assume that there exists both
temporal and spatial auto-correlation in the underlying trend of
property price. In Equation 5, the temporal and spatial features are
excluded in the featurematrix- 008 . The non-linear function f” is also

learnt by an XG-Boost regressor with the same hyper-parameters
as in sections 4.1 and 4.2.

Similar to section 4.2, we assume that there exists a certain level
of property price, denoted as  6C for every temporal period t and
spatial division g. The log-transformed property price is the product
of spatio-temporal price level  6C and static estimator f”(- 008 ), plus
a zero-mean normally distributed error term.

~86C =  6C · 5 00(- 008 ) + Y8 , Y8 ⇠ N(0,f2) (5)
For a dataset consisting of real estate transactions of T temporal

periods and G spatial divisions, all the price level values  1,1,  1,2,
...,  1,) ,  2,) , ...  ⌧,) compose of a G ⇥ T panel, which could be
modelled by the STNN algorithms. In contrast to the scalar latent
factor /C in section 4.2, the latent factor / 0C in Equation 6 is a vector
of length G, which denotes the latent state of all G spatial divisions
at temporal period t.

The spatial auto-correlation is integrated with matrix W, which
is a G ⇥ G correlation matrix of all G spatial divisions. When STNN
is deployed, W stays static with pre-de�ned input values. STNN-R
takes the pre-de�nedW as initial values and re�nes the non-zero
cells. In the case of STNN-D, all cells of W are initiated with equal
value 1 / (G ⇥ G) and the ultimate output values are learnt in the
training process.

The dynamic transition function h in Equation 6 generates the
latent factor at (t+1) / 0C+1 from its own latent state at time at t / 0C
(intra-dependency) and a weighted mean of latent states of all other
spatial divisions, · / 0C (inter-dependency). \0 and \1 are linear
mappings of any element of / 0C to itself and all other elements,
respectively.

/ 0C+1 = ⌘(/ 0C · \0 +, · / 0C · \1) (6)
With forecast of any latent factor / 0C , estimation of the corre-

sponding spatio-temporal price level  ̂6C could be generated using
the decoder d’ and linear mapping \6 .

 ̂6C = 3 0(/ 0C ) · \6 (7)

4.4 Iterative Method and Price Standardisation
Contrary to the Hierarchical Trend Model, which is optimised with
Kalman �lter and smoother [6], there exists no one-shot solution
to optimised the hybrid methods for RNN and STNN. Therefore,
iterative approaches, including multiple training and re-calibration
of XG-Boost regressors, have to be adopted in order to separate the
dynamic and static components of both hybrid methods.

Such iterative approaches are described in pseudo-codes of Al-
gorithm 1. The pseudo-codes brie�y describe the use case of T -fold
cross-validation of forecast horizon h with rolling training window
of length of )0 periods. Note that arithmetic-mean is adopted in
the averaging process of ratios due to better results compared to
harmonic-mean and geometric-mean.

5 EXPERIMENTAL SETUP
To compare the performance of the threemethods introduced in Sec-
tion 4, experiments are conducted on a case of real estate appraisal
of residential properties of Amsterdam. This section describes the
dataset and the features, the cross-validation method for forecast
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Algorithm 1 Iterative Method for Hybrid Methods
1: Optimise XG-Boost hyper-parameters with data in initial )0

periods
2: for : in 1 to T do
3: training window [k, )0 + k - 1]
4: period to forecast g  )0 + ⌘ + :
5: Fit dynamic XG-Boost regressor '3 with data in training

window
6: min_t k (minimum value of training window)
7: if model is RNN then
8: Calculate "static" predictions e~8 with '3 and min_t
9: Calculate ratios A8C  ~8C /e~8
10: Average ratios A8C by time to get levels �̂C
11: Re-calibrate static prediction e~8  ~8C /�̂C
12: Train RNN with �̂C
13: Generates dynamic forecast �̂g of period g
14: else ù model is STNN/STNN-R/STNN-D
15: one-hot encoded spatial vector S 0
16: Calculate "static" predictions e~8 with '3 , min_t and S
17: Calculate ratios A 086C  ~86C/e~8
18: Average ratios A 086C by time and space to get levels  ̂6C
19: Re-calibrate static prediction e~8  ~86C/ ̂6C
20: Train STNN/STNN-R/STNN-D with  ̂6C
21: Generates dynamic forecast  ̂6g of of period g
22: end if
23: Fit static XG-Boost regressor 'B with re-calibrated e~8
24: Calculate static forecast e~ 9 of period g with 'B
25: if model is RNN then
26: Combined forecast values ~̂ 9g  �̂g · e~ 9
27: else ù model is STNN/STNN-R/STNN-D
28: Combined forecast values ~̂ 96g   ̂6g · e~ 9
29: end if
30: end for

as well as the hyper-parameter settings for the machine learning
and deep learning models.

5.1 Dataset and Features
This thesis project utilises a dataset fromWatson + Holmes 1 with
100,727 unique entries of transaction records of residential real
estate properties in Amsterdam from 1 Jan. 2010 to 31 Dec. 2021.
Tables 2 and 3 of Appendix A provide summaries for numerical
features with the original response variable (transaction price per
m2 before log-transformation) and categorical/binary features, re-
spectively.

5.1.1 Static Features. The features listed in Table 1 describe the
characteristics of the real estate properties and therefore considered
to be static. Variance from these features are captured by an XG-
Boost regressor in hybrid methods with RNN or STNN.

5.1.2 Spatial and Temporal Features. The dataset from Watson +
Holmes provides spatial features of di�erent levels for every trans-
action record. These spatial features are Stadsdeel (District), Gebied

1https://www.watsonholmes.nl/

Feature Type

Single-/Multi-family Type Binary

Parking Binary

Furnished Binary

Upholstered Binary

Building Form Binary

Object Type Categorical

Energy Label Categorical

Maintenance Level Categorical

Construction Year Numerical

Area of Living Numerical

Number of Rooms Numerical

Table 1: Static Features and Types. Feature names in Dutch are
originals from the dataset. Feature names in English are uno�cial
translations and for reference only.

(region), Wijk (quarter), Buurt (Neighbourhood) and geographic
coordinates (latitude and longitude values) from high to low level.

The dataset also provides exact transaction date for every data
entry. However, to utilise the RNN and STNN models, data series
and data panels have to be constructed using discrete spatial and
temporal features. Therefore, data points have to be aggregated in
temporal or spatio-temporal bins to generate temporal series �C
and spatio-temporal panel  6C .

High level of aggregation (e.g. Stadsdeel ⇥ Quarter) results in
loss of information while low level of aggregation (e.g. Buurt ⇥
Month) leads to �uctuation in �C and  6C or even lack of data
points in certain combination. Therefore, the level of details in
the aggregation process of spatial and temporal features must be
chosen with caution. Experimental results show that aggregation
by Gebied and month generates the best and most stable forecast
results. Hence, Gebied and transaction month are chosen as the
spatial and temporal features.

Figure 1 shows the mean transaction price per m2 by month of
the whole dataset. Figure 2 shows the mean price per m2 by Gebied
of the whole dataset scaled in colour. The temporal and spatial
auto-correlations in the underlying trend of the transaction price
could be e�ortlessly observed.

5.2 Cross-Validation
To compare experimental results and validate models, we adopt a
method similar to time-series cross-validation. As shown in Figure
3, the original dataset is split into rolling training windows and
forecast testing sets based on temporal periods, skipping certain
periods in between. In the experiments in Section 6 particularly, 15-
fold one-month forecast cross-validations are conducted. Forecast
horizons are set from 1 to 24 month(s) ahead so the rolling training
windows have length 129 to 106 months, respectively.
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Figure 1: Temporal Feature. Mean price per m2 by month of the
whole dataset.

Figure 2: Spatial Feature. Mean price per m2 by Gebied of the
whole dataset, scaled in colour.

Figure 3: Cross-validation with rolling training window.

5.3 Pre-de�ned Spatio-Weights
As described in Equation 6 in Section 4.3, STNN and STNN-R mod-
els require a G ⇥ G matrix as input, which indicates the (initial)
correlation weight of every pair of spatial divisions. In the experi-
ments in Section 6, as Gebied is chosen as the spatial division,W is
a 22 ⇥ 22 matrix for 22 Gebieden in Amsterdam. Based on domain
knowledge, Gebied-pairs sharing land borders are assigned with
weight 1.0, pairs bordered by small water-bodies (e.g. lakes) are

assigned with weight 0.5 while pairs separated by River Amstel,
which �ows through the centre of the city, are assigned with weight
0.2. Meanwhile, the diagonal of W is set as zero, with the assump-
tion of zero self auto-correlation. The pre-de�nedW is visualised
in the left plot of Figure 9.

5.4 Hyper-parameter Settings
5.4.1 Hyper-parameters for XG-Boost. For fair comparison ofmodel
performance, the XG-Boost regressors of the baseline method as
well as the two hybrid methods are all constructed with 500 gradi-
ent boosted trees. The other hyper-parameters are optimised by a
5-fold grid search using data of the initial training window of each
cross-validation experiment. The selection grid is listed in Section
B of Appendix.

5.4.2 Hyper-parameters for RNN and STNN. The experiments of
this project directly utilise STNN/STNN-R/STNN-D models devel-
oped by Delasalles et al., which are optimised by grid search [3].
The neural networks are con�gured with one hidden layer along
with identity function or hyperbolic tangent (tanh) as activation
functions. Note that it is not a common practice to use the linear
identity function as the activation function of a neural network.
However, due to the good experimental results from Delasalles et
al., we decide to include the linear function in our experiments.

In the meantime, we experiment with other hyper-parameters,
such as multiple hidden layers, ReLU and Softplus activation func-
tions but forecast results are not improved. As the magnitude of
the sample data series provided by Delasalles et al. are of similar
magnitude of the (spatio-)temporal series of this project, we decide
to re-scale the series and adopt the con�guration from Delasalles et
al..

6 EXPERIMENT RESULTS
With the experimental setup described in Section 5, multiple ex-
periments are conducted on di�erent forecast horizons ranging
from 1 to 24 months. Subsequently, the experiment with the best
performance in terms of forecast error and stability is selected and
we further investigate model performance on every month in the
cross-validation periods. In addition, we compare the spatial corre-
lation matrixW re�ned and discovered by the STNN models to the
pre-de�ned values.

6.1 RMSE Percentage of Individual Forecast
Horizons

As described in Section 5.2, all experiments are cross-validated on
the last 15 months of the whole temporal period of the dataset,
namely Oct. 2020 to Dec. 2021. We evaluate the forecast error by
the ratio (as percentage) of the RMSE of the forecast values and
the mean of the ground truth on the 15-month cross-validation
period. Figure 4 shows the RMSE percentage of the �ve methods on
individual forecast horizons, with RNN/STNN/STNN-R/STNN-D
having tanh as the activation function. Figure 5 shows results from
the same experiments, except for identity activation function for
the neural network models. The exact RMSE percentage values are
listed with 3-month intervals in Table 4 of Appendix C.
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From Figures 4 and 5, we can e�ortlessly learn that RNN is
the worst model in terms of forecast error. STNN generates lower
forecast error than RNN but is far from the performance of the
other three methods. The positions of curves of STNN-R and STNN-
D appear to be swapped in the two graphs. In Figure 4, STNN-R
is slightly above XG-Boost while STNN-D is below the baseline
curve starting from 11-month horizon. The biggest gap between
STNN-D and XG-Boost is 1.12% at 21-month horizon, which also
sees the biggest gap between STNN-D and RNN at 21.11%. In Figure
5, STNN-D stays above XG-Boost for all horizons with a steep
increase from 21 to 24 months, while STNN-R is below the baseline
curve from 10-month horizon onwards, with largest di�erence of
1.77% also at 21-month horizon. The largest di�erence between
STNN-R and RNN is also recorded at 21-month horizon with 22.49
%. To summarise, the baseline method performs the best for short
forecast horizons but is beaten by STNN-D with tanh activation
and STNN-R with identity function for long horizons.

Figure 4: Results from individual models of cross-validation ex-
periments of di�erent forecast horizons. Values are percentage of
RMSE over mean price per m2 of every forecast horizon. RNN,
STNN, STNN-D, STNN-R models are con�gured with tanh activa-
tion function.

Figure 5: Results from individual models of cross-validation ex-
periments of di�erent forecast horizons. Values are percentage of
RMSE over mean price per m2 of every forecast horizon. RNN,
STNN, STNN-D, STNN-R models are con�gured with identity acti-
vation function.

6.2 RMSE Percentage of Individual Forecast
Periods

Although the biggest gap of RMSE percentage appears at 21-month
horizon, it is not necessarily the best performance of the STNN
hybrid method, as longer forecast horizon brings larger forecast
errors. In this subsection, we compare RMSE percentage of the �ve
methods by month in the 15-month cross-validation period, namely
Oct. 2020 to Dec. 2021.

Figures 6, 7 and 8 show the RMSE percentage bymonth of the �ve
methods of forecast horizons of 3 months, 11 months and 21 months
respectively. The exact RMSE values are listed in Tables 5, 6 and 7
of Appendix D respectively. The RNN and STNN/STNN-R/STNN-
D models all use tanh as activation function. Again, it could be
easily noticed that RNN and STNN methods are outperformed in
almost every month by XG-Boost, STNN-R and STNN-D methods,
regardless of the forecast horizon.

In all three graphs, the RMSE percentage of XG-Boost method
has a sharp increase between Feb. and Apr. 2021. In the same period,
STNN-D hybrid method starts to surpass the baseline model for
11-month and 21-month horizons. Checking back on Figure 1, the
period saw a boom in the housingmarket of Amsterdam. The results
imply that STNN-D hybrid method beats the baseline model on
detecting turning points of the market trends.

In Figures 7 and 8 particularly, where the STNN-D hybrid method
transcends the baseline on overall RMSE percentage, the RMSE per-
centage remains below 20% after the steep growth of price around
Mar. 2021. However, before the boom period, the STNN-D hybrid
method generates RMSE of over 20% for 21-month horizon but
stays under 20% for 11-month horizon. In other words, the STNN-D
method produces more stable forecast results for 11-month horizon
than 24-month.

In short, the STNN-D hybrid method captures steep growth of
underlying trend better than the baseline method, but loses stability
in the case of extra-long forecast horizons.

Figure 6: Results from individual models of 15 cross-validation
with tanh activation function of 3-month forecast horizon. Values
are percentage of RMSE over mean price per m2 of every month of
cross-validation.
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Figure 7: Results from individual models of 15 cross-validation
with tanh activation function of 11-month forecast horizon. Values
are percentage of RMSE over mean price per m2 of every month of
cross-validation.

Figure 8: Results from individual models of 15 cross-validation
with tanh activation function of 21-month forecast horizon. Values
are percentage of RMSE over mean price per m2 of every month of
cross-validation.

6.3 Spatial Relations Re�ned and Discovered by
STNN

Apart from forecast values of individual property price, the STNN-
R/STNN-D hybrid methods also generate re�ned/discovered spatial
correlation weight matrix as output, which provide insights to the
housing market when compared to human-pre-de�ned input.

Figure 9 shows the spatial correlation matrices of pre-de�ned
input for STNN, re�ned values from STNN-R and discovered values
from STNN-D, from left to right respectively. All three matrices
are from the last cross-validation period (Dec. 2021) of a 11-month
forecast experiment, with tanh activation function. The Gebieden
are sorted in ascending alphabetical order both horizontally and
vertically and thus the matrices appear to be symmetric along the
diagonal.

As described in Section 5.3, correlations of neighbouring Ge-
bieden are pre-de�ned as 1.0 while pairs across lakes and River
Amstel are assigned with 0.5 and 0.2 respectively. Compared to
the pre-de�ned grid on the left, the STNN-R re�ned grid in the
middle consists of visibly lower values, ranging from 0.3 to 0.8

for most cells. In other words, results from STNN-R indicate that
neighbouring Gebieden have lower correlation in property prices
than anticipated.

Results from STNN-D method are also unexpected - the discov-
ered correlation grid on the right in Figure 9 contains far fewer cells
with zero values than the pre-de�ned grid on the left. Besides, the
range of values is narrower, with the highest correlation captured
at 0.46 between Bijlmer-Centrum and Gaasperdam / Driemond. The
STNN-D discovered spatial correlation values imply that there exist
weak underlying correlations amongst disconnected or even distant
Gebieden.

As the exact Gebieden pairs are obscure and the geographic
locations are invisible from the grids, we further investigate the
re�ned and discovered correlation values of two Gebieden, namely
Centrum-West and Bijlmer-Centrum, on the map of Amsterdam.
Figures 10 and 11 show the 22 Gebieden of Amsterdam included in
this project with colour scaled by the re�ned and discovered spatial
correlations respectively with Centrum-West, marked with a star.
Figures 12 and 13 show the same plots for Bijlmer-Centrum.

6.3.1 Spatial Correlations of Centrum-West Gebied. Centrum-West
lies in the centre of Amsterdam and is regarded as one of the Ge-
biedenwhere the highest-priced properties are located. The STNN-R
re�ned values show thatCentrum-West has spatial correlations from
0.46 to 0.53 with three adjacent counterparts,Westerpark, Oud-West
/ De Baarsjes and Centrum-Oost. However, the highest correlation
occurs with Oud-Noord across River Amstel, which contradicts to
the common belief that housing properties on the north side of
the city are worth much less than those on the south side. The
STNN-D discovered results, however, are aligned with such belief
and indicate only 0.07 correlation between the two Gebieden across
the river. Moreover, the STNN-D method unveils relatively high
correlation ofCentrum-West toDe Pijp / Rivierenbuurt (0.32) andWa-
tergraafsmeer (0.31), which are both urban Gebieden non-adjacent
to Centrum-West.

6.3.2 Spatial Correlations of Bijlmer-Centrum Gebied. Contrary
to Centrum-West, Bijlmer-Centrum is a suburban area developed in
recent decades in southeastern Amsterdam. As shown in Figure 12,
due to the restrictions of STNN-R, algorithm-re�ned results suggest
high correlations only with Bijlmer-Oost (1.0) and Gaasperdam
/ Driemond (1.0), the solely two adjacent Gebieden. Without the
neighbouring restrictions, algorithm-discovered results of STNN-D,
however, display no correlation to Watergraafsmeer, the closest
non-adjacent Gebied northwest to Bijlmer-Centrum. Instead, output
results manifest correlations to Gebieden on the brink of the city,
such as Osdorp (0.27) and Geuzenveld-Slotermeer-Sloterdijken (0.32)
in the west and Noord-West (0.33) and Noord-Oost (0.32) in the north
across River Amstel, all four of which are newly developed areas
of the city. These results suggest that spatial auto-correlations do
not necessarily depend on geographic adjacency but alternatively
on the development history of the area or characteristics such as
distance to the city centre.

7 DISCUSSION AND LIMITATIONS
The experiment results in Section 6 show lower RMSE values from
all three STNN models than RNN, indicating that spatio-temporal
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Figure 9: Gebied correlation weight matrix output from the last cross-validation (Dec. 2021) of 11-month forecast. Gebieden are sorted in
ascending alphabetical order. Left: pre-de�ned matrix for STNN. Middle: output matrix from STNN-R. Right: output matrix from STNN-D.

Figure 10: STNN-R re�ned spatial correlations of Centrum-West
Gebied, scaled in colour, from the last cross-validation (Dec. 2021)
of 11-month forecast.

deep learning algorithms outperform their counterparts for tem-
poral forecasting. Meanwhile, the three STNN models fail to beat
XG-Boost on short forecast horizons and from Oct. 2020 to Mar.
2021 on long forecast horizons. This might be due to the strong pre-
dictive power of XG-Boost for in-period prediction but potentially
over-�tting for long out-of-period forecast. However, the loss of in-
formation in the aggregation process of the iterative method cannot
be ignored. The poor results from the RNN hybrid method, of which
the aggregation level is highest, is strong evidence. Meanwhile,
the HTM suggests a hierarchy of underlying trends of multiple
neighbourhood levels or even house types [5]. And from domain
knowledge, we learn that real estate investors consider location of
properties at neighbourhood levels such as Buurt andWijk. Thus,
the loss of information of the STNN hybrid method might also be
due to incoporating only one layer of spatial trend (Gebied) and the

Figure 11: STNN-D discovered spatial correlations of Centrum-
West Gebied, scaled in colour, from the last cross-validation (Dec.
2021) of 11-month forecast.

method could be improved by expanding the spatial dimensions. A
possible solution is further discussed in Section 8.

Alternatively, a one-shot solution similar to Kalman �lter and
smoother for HTM [6] might also reduce the information loss in
the aggregation process. The XG-Boost regressors are included in
the hybrid method to separate the static and dynamic components,
i.e. standardisation, which serve only as a work-around solution
and would no longer be necessary if the static components are
incorporated in the neural network. Details are also given in Section
8.

Contrary to XG-Boost, the process of hyper-parameter optimi-
sation for neural networks could be time-consuming and does not
always result in convergence. Therefore, instead of full grid-search,
we scale the data panel and utilise the hyper parameter settings of
STNN optimised by Delasalles et al. [3]. However, as experimental
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Figure 12: STNN-R re�ned spatial correlations of Bijlmer-Centrum
Gebied, scaled in colour, from the last cross-validation (Dec. 2021)
of 11-month forecast.

Figure 13: STNN-D discovered spatial correlations of Bijlmer-
Centrum Gebied, scaled in colour, from the last cross-validation
(Dec. 2021) of 11-month forecast.

results show that STNN produces lower forecast errors in booming
period as described in Section 6.2, multiple hidden layers with other
activation functions such as Sigmoid could be better con�gurations
and the solution adopted in this project might have led to STNN
algorithms under-performing.

8 CONCLUSION AND FUTUREWORK
This project aims to compare forecast performance on real estate
appraisal by a spatio-temporal deep learning algorithm STNN to
state-of-the-art machine learning algorithm XG-Boost and widely
used temporal forecast algorithm RNN. Another objective of this
project is to explore the insights on real estate market from the
re�ned and discovered spatial correlations from the STNN-R and
STNN-D models.

Based on the experimental results, we could conclude that STNN
outperforms RNN on all forecast horizons with up to 22% smaller
RMSE. STNN also beats the baseline method XG-Boost with up to
1.7% lower forecast errors on long forecast horizons and in booming
periods of the housing market. The spatial correlations discovered
by the STNN-D algorithm are closer to reality than pre-de�ned
values and the re�ned output by STNN-R. The discovered results
also suggest that spatial auto-correlations do not necessarily depend
on adjacency but instead depend on the development history of the
area or characteristics such as distance to the city centre.

This project could be extended and improved in several aspects.
As mentioned in Section 7, the spatio-temporal panel could be con-
structed with di�erent neighbourhood levels, e.g. Buurt andWijk.
This process could be further improved by de�ning synthetic spa-
tial "bins" instead of administration-de�ned divisions. For instance,
spatial "bins" could be de�ned by ranges of latitude and longitude
values, which could average the size of each spatio-temporal "bin"
and therefore stabilise the values of the spatio-temporal panel. Fur-
thermore, as space and time are by nature continuous, converting
the deep learning neural network to consume spatial and temporal
features in continuous form could potentially result in forecasts of
higher accuracy.

One fundamental assumption of the hybrid method for RNN
and STNN of this project is that the worth of the characteristics
of residential properties, such as number of rooms and area of
living, is invariant over space and time and therefore considered
"static". By breaking such assumption and incorporating the "static"
components into the neural networks, the XG-Boost regressors and
standardisation process could be dropped and forecast performance
could be improved, as suggested in Section 7.

The STNN models utilised in this project are implemented using
PyTorch tensor 2 objects with one temporal dimension and one
spatial dimension. The tensor objects could be expanded with more
spatial dimensions to incorporate multiple neighbourhood levels.
Similarly, the numerical characteristic features, such as area of
living and number of rooms, could be integrated with additional
dimensions. The categorical characteristic features could either be
transformed into binaries using one-hot encoding (such as Object
Type) or transformed with ordinal scale in one dimension (such as
Energy Label or Maintenance Level). The expanded STNN no longer
relies on the assumption that characteristics of properties are spatio-
temporally invariant and hence no longer requires aggregation or
standardisation in the training process. In other words, one-shot
training and optimisation is possible for the expanded STNN.

2https://pytorch.org/docs/stable/tensors.html
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A SUMMARY OF DATASET

Feature Mean Std. Min. 25% 50% 75% Max.

Transaction Price per m2 4742.06 2019.67 22.73 3229.17 4368.42 6057.69 19942.20

Construction Year 1948.09 51.70 1530 1919 1951 1989 2020

Area of Living (m2) 88.33 48.79 9 58 78 104 1200

Number of Rooms 3.41 1.47 1 3 3 4 27

Table 2: Response variable and numerical features. This table displays the distribution of the response variable, transaction price per
m2, before log-transformation as well as all the numerical features of the whole dataset.

Feature Type Unique Values Value of Most Occurance Frequency

Gebied Categorical 22 De Pijp / Rivierenbuurt 10.22%

Object Type Categorical 6 Apartment 87.50%

Energy Label Categorical 7 Unclassi�ed 25.85%

Maintenance Level Categorical 9 Good 65.69%

Building Form Binary 2 Existing Building 97.60%

Single-/Multi-family Type Binary 2 Multi-family Type 87.50%

Parking Binary 2 False 85.42%

Furnished Binary 2 False 99.64%

Upholstered Binary 2 False 91.73%

Table 3: Categorical and binary features. This table shows a summary of all the categorical and binary features of the whole dataset.

B HYPER-PARAMETER SELECTIONS FOR GRID SEARCH OF XG-BOOST
• Number of gradient boosted trees 2 [500]
• Maximum depth of each tree 2 [10, 15]
• Gradient boosting learning rate 2 [0.03, 0.05, 0.07]
• Sub-sample ratio of the training instance 2 [0.5, 0.7]
• Sub-sample ratio of features when constructing each tree 2 [0.5, 0.7]
• L1 regularization term on weights (alpha) 2 [0.01, 0.1, 1.0]
• L2 regularization term on weights (lambda) 2 [0.01, 0.1, 1.0]
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C TABLE OF RMSE OF INDIVIDUAL FORECAST HORIZONS

Model Act. Function Forecast Horizons (Months)

1 3 6 9 12 15 18 21 24

XG-Boost 13.34 14.22 15.81 17.34 18.33 19.04 19.79 20.63 21.37

RNN identity 15.70 19.74 26.55 31.68 34.95 37.76 39.19 41.34 42.16

tanh 15.95 20.97 27.56 32.38 34.98 37.34 39.20 40.62 41.51

STNN identity 15.72 16.80 19.48 22.45 24.72 27.75 30.30 32.22 34.55

tanh 15.95 18.16 22.38 26.20 28.84 31.81 33.83 35.68 37.46

STNN-R identity 15.54 16.13 16.99 17.61 17.89 18.09 18.25 18.86 20.37

tanh 15.57 16.47 18.03 19.45 20.36 20.96 21.69 22.50 23.21

STNN-D identity 15.93 17.31 18.31 18.98 20.12 20.81 23.82 27.19 39.78

tanh 15.78 16.64 17.23 17.85 18.22 18.54 19.11 19.51 20.50

Table 4: Results from individual models of cross-validation experiments of di�erent forecast horizons. Values are percentage of RMSE over
mean price per m2 of every forecast horizon. Best results of every horizon are in bold.

D TABLES OF RMSE OF INDIVIDUAL FORECAST PERIODS

Model 2020 | 2021

Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

XG-Boost 11.56 13.91 12.88 12.04 12.50 13.81 15.71 15.56 15.63 14.04 14.31 14.37 15.06 14.14 15.80

RNN 17.91 19.37 19.54 19.17 19.78 22.25 24.51 21.94 22.50 21.83 21.11 21.71 19.89 20.20 19.74

STNN 14.70 17.81 17.34 16.88 16.47 18.65 20.20 19.03 19.84 18.99 17.96 18.27 17.22 17.84 18.74

STNN-R 13.95 16.23 15.56 15.60 14.89 16.85 17.40 16.93 17.65 16.37 17.18 16.51 16.61 16.47 17.67

STNN-D 15.63 17.18 16.30 16.51 15.35 17.20 16.43 15.86 16.46 16.49 18.29 17.49 17.49 16.28 18.27

Table 5: Results from individual models of 15 cross-validation with tanh activation function of 3-month forecast horizon. Values are
percentage of RMSE over mean price per m2 of every month of cross-validation. Best results are in bold.
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Model 2020 | 2021

Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

XG-Boost 12.40 14.68 14.32 13.70 13.07 15.56 18.58 18.24 20.02 20.00 19.93 22.09 21.18 20.53 22.34

RNN 31.12 32.08 31.72 32.11 32.23 33.86 36.83 33.35 35.83 36.01 35.75 36.71 34.76 35.10 33.69

STNN 24.84 26.68 27.28 25.97 24.20 26.93 28.96 27.75 29.54 28.77 28.26 31.64 28.44 29.43 29.42

STNN-R 15.77 17.44 17.77 17.82 16.57 18.17 19.72 19.99 22.18 21.38 21.87 22.58 21.40 22.41 24.21

STNN-D 17.82 19.59 18.46 19.42 18.61 17.98 17.00 16.81 17.36 17.48 18.84 17.32 17.30 17.43 18.90

Table 6: Results from individual models of 15 cross-validation with tanh activation function of 11-month forecast horizon. Values are
percentage of RMSE over mean price per m2 of every month of cross-validation. Best results are in bold.

Model 2020 | 2021

Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

XG-Boost 14.66 17.00 16.83 15.50 15.89 18.14 20.73 20.78 22.96 22.54 22.73 24.21 23.46 23.81 24.69

RNN 37.40 39.17 38.81 38.76 38.45 40.72 43.99 40.80 41.58 41.32 41.42 41.92 41.10 41.29 39.93

STNN 33.67 35.99 35.57 35.07 32.77 35.43 37.35 36.51 34.93 36.82 34.62 37.28 37.53 34.78 34.20

STNN-R 19.07 20.63 20.50 20.63 18.55 19.90 21.60 22.64 24.12 22.35 24.67 24.74 23.78 25.55 27.28

STNN-D 22.15 21.83 22.31 22.40 20.35 19.63 18.44 17.22 17.65 17.68 18.94 17.61 18.31 17.96 19.73

Table 7: Results from individual models of 15 cross-validation with tanh activation function of 21-month forecast horizon. Values are
percentage of RMSE over mean price per m2 of every month of cross-validation. Best results are in bold.
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